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The creep in an Al-8.5Fe-1.3V-1.7Si alloy dispersion strengthened with fine Al12(Fe,V)3Si
phase particles and reinforced with alumina short fibres—Composite in the following—is
investigated at temperatures 648, 698 and 748 K. The results are compared with those
obtained for the composite matrix Al-8.5Fe-1.3V-1.7Si alloy (Alloy in the following) at the
same temperatures. Both, the Alloy and the Composite exhibit true threshold creep
behaviour; the true threshold stress decreases rather strongly with increasing temperature.
However, independently of temperature, it is about twice as high in the Composite than in
the Alloy. This is explained employing the concept of the load transfer effect in the true
threshold creep behaviour. The results strongly suggest that rather dramatic enhancement
of creep resistance of an Al-8.5Fe-1.3V-1.7Si alloy can be reached introducing into it
mechanically strong short fibres of micrometer dimensions, provided the aspect ratio of
the fibres and their volume fraction are large enough. C© 2003 Kluwer Academic Publishers

1. Introduction
The Al-8.5Fe-1.3V-1.7Si (8009Al type) alloy pro-
cessed by rapid solidification and powder metallurgy
route is known to exhibit remarkable creep resistance
up to temperature close to 750 K. This resistance is
due to the high volume fraction (∼0.27) of fine (less
than 50 nm in diameter) incoherent particles of the
Al12(Fe,V)3Si phase and relatively low coarsening rate
of these particles at the temperatures mentioned above
[1–6].

The Young’s modulus of an aluminium alloy can be
significantly enhanced by discontinuous reinforcement
with hard unshearable ceramic particulates, short fibres
or whiskers of micrometer dimensions even at tempera-
tures as high as 700 K [7]. This fact motivated Peng et al.
[8] and Zhu et al. [9] to reinforce an Al-8.5Fe-1.3V-
1.7Si alloy with nitride whiskers and silicon carbide
whiskers, respectively, as well as Ma and Tjong [5] and
Čadek et al. [10, 11] with silicon carbide particulates.
Beside increasing the Young’s modulus, the discontinu-
ous reinforcement can be expected to introduce the load
transfer effect (e.g., [12–17]), under certain conditions
at least [18]. Thus, while Peng et al. [8] and Zhu et al.
[9] reported the load transfer effect in creep behaviour
of an Al-8.5Fe-1.3V-1.7Si alloy reinforced with sili-
con nitride (Si3N4) or silicon carbide (SiC) whiskers,
the load transfer effect was not detected by Ma and
Tjong [5] investigated the creep behaviour of the alloy
under consideration reinforced with 15 vol% SiC par-
ticulates at temperature 723 to 823 K. Moreover, Peng

et al. [8] and Zhu et al. [9] found higher true threshold
stress in the reinforced than in the unreinforced alloy.
Later, also the present authors [6] reported significantly
higher true threshold stress in the Al-8.5Fe-1.3V-1.7Si
alloy reinforced with 15 vol% SiC particulates than in
the unreinforced alloy. Since the discontinuous rein-
forcement such as particulates or whiskers do not rep-
resent effective obstacles to dislocations motion, the
observed effect of enhanced true threshold stress as ob-
served by the present authors [10] was suggested to
follow from fine alumina particles appearing as a result
of repeated atomisation of the alloy before reinforced
alloy fabrication [10]. However, this suggestion had to
be abandoned since a similar effect of reinforcement
was observed in an ODS copper alloy reinforced with
alumina short fibres [17].

In the ODS copper reinforced with 15 vol% alumina
short fibres 3 µm in diameter and ∼19.5 µm in length
the true threshold stress was approximately twice as
high as that in the unreinforced ODS matrix alloy [17].
This dramatic increase of the true threshold stress was
interpreted in terms of the factor by which the flow
stress in the matrix is reduced due to load transfer and
build-up of hydrostatic stresses (cf. [19]).

However, it should be pointed out that the load trans-
fer may be partly or fully relaxed by diffusion assisted
flow [18], i.e., by diffusion via reinforcement/matrix
interfaces. Apparently, such a relaxation is more likely
when the reinforcement is represented by particulates
than when it is represented by short fibres aligned to
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the direction of applied stress. This may explain some
observations (e.g., [5]) of the absence of load transfer in
alloys reinforced with mechanically strong particulates
for which the aspect ratio is effectively close to 1. The
investigation of ODS copper reinforced with alumina
short fibres strongly suggests (cf. Fig. 9 in [17]) that
the significantly higher creep strength of alumina short
fibre reinforced ODS copper than that of unreinforced
ODS copper is essentially due to the effect of the short
fibre reinforcement on the true threshold stress.

Thus, taking into account the above results obtained
investigating threshold creep behaviour of ODS copper
and ODS copper reinforced with alumina short fibres
it can be reasonably expected that the creep strength of
an Al-8.5Fe-1.3V-1.7Si alloy can be rather dramatically
increased by reinforcing it with ceramic short fibres of
micrometer dimensions and the fibre aspect ratio (the
length to the diameter of a fibre) at least ∼10 although
also the dimensions of a fibre can play a significant role.

Therefore, the aim of the present investigation is to
obtain new ε̇m(σ, T ) creep data (ε̇m is the minimum
creep strain rate, σ is the applied stress and T is the test-
ing temperature) for an Al-8.5Fe-1.3V-1.7Si alloy and
the same alloy reinforced with 15 vol% alumina short
fibres of proper both dimensions and aspect ratio, and
compare the results of data analysis with the prediction
of the idea on the role of load transfer in the threshold
creep behaviour of the dispersion strengthened alloys.
This idea was presented in two previous papers of the
authors [16, 17] and is very briefly outlined again in
Section 4.1.

2. Materials and experimental procedures
The Al-8.5Fe-1.3V-1.7Si (8009Al type) alloy was
melted in an induction furnace and argon atomised to
powder of about 25 µm in particle size. Part of the alloy
powder was mixed with alumina short fibres nominally
3 µm in diameter and ∼40 µm in length. The mixture
was consolidated at 823 K and extruded at the same
temperature to bars 12 mm in diameter. Another part
of the alloy powder was processed in the same way as
the mixture of the alloy powder and the alumina short
fibres.

The resulting mean grain diameter was found close
to 1 µm in the unreinforced alloy as well as in the alloy,
reinforced with alumina short fibres, i.e., the compos-
ite. The structure of as extruded composite was reason-
ably homogeneous, although the Al12(Fe,V)3Si phase
particles (also fine alumina particles were necessarily
present as a result of atomisation) were arranged in
rows parallel to the extrusion direction as it is, as a rule,
the case of the Al-8.5Fe-1.3V-1.7Si alloy processed by
rapid solidification and powder metallurgy route (cf.
Fig. 1 in [6]). Detailed studies of structure in alloys
of this type were performed by Peng et al. [2, 3] and
especially, by Carreño and Ruano [4].

From the bars of the alloy as well as from the bars of
the composite, specimens for tensile creep tests 4.0 mm
in diameter and 25.0 mm in gauge length were ma-
chined. The constant tensile stress creep tests were per-
formed at the temperatures of 648, 698 and 748 K in
purified argon; the testing temperatures were controlled

(a)

(b)

Figure 1 Representative examples of creep curves in the true creep strain
rate ε̇ versus true creep strain ε co-ordinates for the Alloy and the Com-
posite at 748 K and various applied stresses (a). Examples of ε̇ versus
ε relations obtained using incremental applied stress creep test of the
Composite at 648 K (b).

within 0.5 K. The creep elongation was measured by
means of linear variable differential transducers cou-
pled to a digital data acquisition system.

The technique of incremental stress creep tests was
applied, although some tests at properly chosen stresses
and various temperatures were performed running them
well into tertiary creep stage if not to fracture to show
that, as to the shape of creep curves, the Al-8.5Fe-1.3V-
1.7Si alloy reinforced with alumina short fibres (the
composite) exhibits the behaviour similar to that of the
matrix alloy. This is illustrated in Fig. 1a. From the
figure it can be seen that the steady state is not observed
and that only the minimum creep strain rate ε̇m can be
defined at any testing temperature and applied stress.

Thus, an incremental isothermal creep stress change
test was performed as follows (cf. [17, 20]). At a given
applied stress σ , the creep strain rate ε̇ was measured
up to the creep strain, at which the creep strain rate
started to increase indicating the onset of the tertiary
creep stage at a given stress σ . Then, σ was increased
by �σ to obtain the minimum creep strain rate at the
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T ABL E I Matrix Alloy and matrix Alloy - alumina - short - fibre Composite. Minimum creep strain rates ε̇m measured at various testing temperatures
T and various applied stresses σ

Alloy Composite

T = 648 K T = 698 K T = 748 K T = 648 K T = 698 K T = 748 K

σ (MPa) ε̇m (s−1) σ (MPa) ε̇m (s−1) σ (MPa) ε̇m (s−1) σ (MPa) ε̇m (s−1) σ (MPa) ε̇m (s−1) σ (MPa) ε̇m (s−1)

162 1.1 E – 3 116 2.2 E – 3 75 5.1 E – 3 400 4.5 E – 3 270 6.0 E – 3 155 4.5 E – 3
151 4.7 E – 4 103 3.8 E – 4 60 1.8 E – 4 345 8.1 E – 4 235 1.8 E – 3 135 1.3 E – 3
137 1.1 E – 4 91 5.5 E – 5 60 3.5 E – 4 300 1.5 E – 4 210 2.7 E – 4 120 2.1 E – 4
131 4.6 E – 5 82 6.1 E – 6 56 5.5 E – 5 285 5.1 E – 5 183 3.5 E – 5 113 6.5 E – 5
115 2.9 E – 6 78 1.4 E – 6 52 7.5 E – 6 255 7.7 E – 6 167 5.4 E – 6 105 1.4 E – 5
109 5.7 E – 7 76 2.7 E – 7 46 7.0 E – 7 240 1.7 E – 6 163 1.4 E – 6 100 2.7 E – 6
106 8.1 E – 8 76 1.6 E – 7 44 7.8 E – 8 230 2.9 E – 7 160 4.1 E – 7 94 1.8 E – 7
103 7.8 E – 9 74 3.0 E – 8 43 8.5 E – 9 225 6.0 E – 8 155 4.6 E – 8 91 2.0 E – 8
101 1.9 E – 9 72 1.8 E – 9 42 1.4 E – 9 220 1.3 E – 8 153 6.5 E – 9 90 3.1 E – 9

218 2.1 E – 9 152 1.2 E – 9 90 2.3 E – 9

stress σ + �σ and the above procedure was applied
again (Fig. 1b). As a rule, two to five values of ε̇m(σ )
were obtained using one specimen.

3. Results
3.1. Al-8.5Fe-1.3V-1.7Si (matrix) alloy
The minimum creep strain rates ε̇m in the Al-8.5Fe-
1.3V-1.7Si alloy (simply Alloy in the following) mea-
sured at three temperatures T ranging from 648 to 748 K
and various applied stresses σ are listed in Table I and
plotted against σ in Fig. 2. It can be seen that the ap-
parent stress exponent mc of minimum creep strain rate
defined as

mc =
(

∂ ln ε̇m

∂ ln σ

)
T

(1)

increases with decreasing applied stress at any tem-
perature under consideration, which indicates the true
threshold creep behaviour.

The true thershold stress is independent of applied
stress by definition. At any given temperature it repre-

Figure 2 Alloy: relations between the measured minimum creep strain
rate ε̇m and applied stress σ at various testing temperatures.

sents the stress bellow which the creep does not take
place at all or, at least, does not take place by the same
mechanism as above it. The true threshold stresses σTH
at various temperatures were estimated using the linear
extrapolation technique, e.g. [21, 22] based on plotting
ε̇

1/n
m versus σ in double linear co-ordinates, where n is

the true stress exponent. For the value of n character-
ising the operating creep strain rate controlling mecha-
nism the relation between ε̇

1/n
m and σ is linear for each

temperature; by its extrapolation to ε̇m = 0 the value of
σTH is obtained.

For the Alloy investigated, the linear ε̇
1/n
m versus σ

relations were found for n ∼= 5 in accordance with
the other works (e.g. [5, 6, 10]). This is demonstrated
in Fig. 3. Values of σTH are equal to 95.9, 68.3 and
40.8 MPa at 648, 698 and 748 K, respectively. The
linear correlation coefficients are given in the caption to
this figure. Note that the values of the linear correlation
coefficients are large; thus the choice of the exponent n
and the estimated values of σTH are reliable. Values of
σTH as well as σTH/G are plotted against temperature
in Fig. 4. As expected (cf. [6, 10]) the true threshold
stress σTH decreases with increasing temperature more
strongly than the shear modulus G for aluminium [23].

Figure 3 Alloy: relations between ε̇
1/n
m and σ at various temperatures

for the true stress exponent n = 5. The true threshold stresses σTH are
equal to 95.9, 68.3 and 40.8 at 648, 698 and 748 K, respectively. The
linear correlation coefficient Rc ranges from 0.9994 to 0.9952.
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Figure 4 Alloy: relations between the true threshold stress σTH and tem-
perature and between the true threshold stress to shear modulus ratio,
σTH/G, and temperature. The derivative dσTH/dT = −0.551 MPa K−1.

Referring to the several previous works (e.g. [6, 10])
it can be assumed that the creep strain rate in the al-
loy under consideration is lattice self-diffusion con-
trolled. Therefore, in Fig. 5, the normalized minimum
creep strain rates ε̇mb2/DL are plotted against normal-
ized effective stresses (σ − σTH)/G; b is the length of
the Burgers vector, DL is the coefficient of lattice self-
diffusion in aluminium [24]. It can be seen that all the
data points can be well fitted by a single straight line
in double logarithmic co-ordinates which strongly sup-
ports the above assumption that the creep strain rate
is controlled by the lattice self-diffusion in the alloy
matrix—aluminium. The slope of the line is close to
the true stress exponent n = 5.

Figure 5 Alloy: the normalized minimum creep strain rate ε̇mb2/DL

plotted against normalized effective stress (σ − σTH)/G. The values of
DL and G are those for the coefficient of lattice self-diffusion and for
the shear modulus in pure aluminium, respectively.

3.2. Matrix alloy reinforced with alumina
short fibres—the Composite

The minimum creep strain rates ε̇m in the Compos-
ite measured at the temperatures of 648, 698 and
748 K and various applied stresses σ are listed in
Table I and plotted against σ in double logarithmic
co-ordinates in Fig. 6. It can be seen that, again, the
apparent stress exponent mc defined by Equation 1
increases with decreasing applied stress at any tem-
perature under consideration, which indicates the true
threshold creep behaviour. In this respect, the creep be-
haviour of the Composite is similar to that of its matrix
Alloy.

The true threshold stresses σTH of the Composite
were estimated by the same technique as those of the
alloy. From Fig. 7, in which ε̇

1/n
m are plotted against

σ in double linear co-ordinates it is apparent that
the ε̇

1/n
m versus σ relations are linear for n = 5. Thus,

Figure 6 Composite: relations between the measured minimum creep
strain rate ε̇m and applied stress σ at various testing temperatures.

Figure 7 Composite: relations between ε̇
1/n
m and σ at various tempera-

tures for n = 5. The true threshold stresses σTH are equal to 203.0, 141.7
and 84.9 MPa at 648, 698 and 748 K, respectively. The linear correlation
coefficient Rc ranges from 0.9991 to 0.9962.
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Figure 8 Composite: relations between the true threshold stress σTH

and temperatures and between the true threshold stress to shear modulus
ratio, σTH/G, and temperature. The derivative dσTH/dT = −1.181 MPa
K−1.

introducing the alumina short fibre reinforcement into
the Alloy the true stress exponent n remains essentially
unchanged. Values of σTH are equal to 203.0, 141.7
and 84.9 MPa at 648, 698 and 748 K, respectively. The
linear correlation coefficients given in the caption to
Fig. 7 are again large; thus the choice of the expo-
nent n and the estimated values of σTH are fairly re-
liable. The values of σTH as well as the values of the
σTH/G ratio are plotted against temperature in Fig. 8.
The true threshold stress decreases with increasing tem-
perature more strongly than the shear modulus G for
aluminium.

Again, assuming that the minimum creep strain
rate in the Composite is—similarly as in its matrix
Alloy—controlled by the lattice self-diffusion in the
latter, in Fig. 9 the normalized minimum creep strain

Figure 9 Composite: the normalized minimum creep strain rates
ε̇mb2/DL plotted against normalized effective stresses σe/G = (σ −
σTH)/G. The values of DL and G are those for the coefficient of lattice
self-diffusion in and the shear modulus of aluminium, respectively.

Figure 10 The true threshold stresses of the Composite as compared
with those of the Alloy.

rates ε̇mb2/DL are plotted against normalized effective
stresses (σ − σTH)/G. All the data points can be fitted
with a single straight line, which strongly supports the
above assumption on the creep strain rate controlling
process. The slope of the line in Fig. 9 is close to 5 and
thus to the true stress exponent n.

3.3. The true threshold stress of the
Composite as compared with that
of the Alloy

In Fig. 10, the relation between the true threshold stress
and temperature for the Composite is compared with the
similar relation for the Alloy. Both the relations are lin-
ear (cf. Figs 7 and 3). The ratios of σTH (C)/σTH(A) are
equal to 2.11, 2.07 and 2.08 at the temperatures of 648,
698 and 748 K, respectively. Thus the σTH(C)/σTH(A)
ratio is essentially temperature independent, its average
value is equal to 2.09.

4. Discussion
4.1. The creep equation. Enhancement

of the true threshold stress due to load
transfer. The load transfer factor 


The minimum creep strain rate ε̇m in the Alloy inves-
tigated displays the true threshold stress behaviour and
thus can be described by the creep equation (cf. [6, 10])

ε̇m(A)b2

DL
= A(A)

(
σ − σTH(A)

G

)n

, (2)

where (A) denotes the alloy. A(A) is a dimension-
less constant and σTH(A) is the true threshold stress
of the alloy, which is independent of applied stress by
definition.

Introducing a mechanically strong discontinuous re-
inforcement into the matrix, its creep strength is en-
hanced because the reinforcement impedes its plas-
tic flow. The reinforcement strengthening can be
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accounted for by a modified creep equation

ε̇m(C)b2

DL
= A(A)

(
σ/
 − σTH(A)

G

)n

, (3)

where (C) denotes the composite exhibiting the dis-
persion and reinforcement strengthening and 
 is the
factor, by which the flow stress of the Alloy is reduced
due to load transfer and build-up of hydrostatic stresses.
The factor 
 (the load transfer factor in the following)
can be expressed as [19]


 ∼= 1 + 2[2 + (lR/dR)] f
3
2

R , (4)

where lR/dR is the aspect ratio of the reinforcing short
fibres (lR is the length and dR the diameter of a fibre)
and fR is the volume fraction of reinforcement. It should
be pointed out that Equation 4 holds strictly for a stress
exponent of the minimum creep strain rate approaching
infinity (mc → ∞) and for short fibres aligned to the
applied stress direction [19].

The creep Equation 3 can be rewritten as

ε̇m(C)b2

DL
= A(C)

(
σ − σTH(C)

G

)n

(5)

where

A(C) = A(A)/
n (6)

and

σTH(C) = 
σTH(A). (7)

Thus, the true threshold stress σTH(C) of a dispersion
and reinforcement strengthened metal (or solid solution
alloy), i.e., the discontinuous composite with dispersion
strengthened matrix is equal to the product 
σTH(A).

The above simple modelling illustrated in Fig. 1 in
[17] is, in a way, similar to that performed recently by
Rösler and Bäker [19] and illustrated in their Fig. 5.
These authors accepted the creep model developed by
Rösler and Arzt [25], which is based on thermally acti-
vated detachment of dislocations from interacting par-
ticles as the creep strain rate controlling mechanism.
They do not admit the existence of the true threshold
stress arguing that the energy necessary for thermally
activated detachment of a dislocation from an interact-
ing particle is low and thus always attainable in the
detachment event.

However, the true threshold creep behaviour of the
Alloy (and the same holds for the Composite) under
consideration apparently represents a reality at least at
temperatures ranging from 648 to 748 K, provided the
apparent stress exponent mc (Equation 1) increasing
with decreasing applied stress is taken as the relevant
criterion of such a behaviour. According to the above
brief analysis, the true threshold creep behaviour of
an Al-8.5Fe-1.3V-1.7Si alloy reinforced with alumina
short fibres should be expected, since the matrix ex-
hibits the behaviour in question.

4.2. The load transfer factor 
and the true
threshold stress

It is well known (e.g. [21, 22]) that mechanically strong
particulates or short fibres of micrometer dimensions
do not act as effective obstacles to moving disloca-
tions. In fact, the Orowan bowing stress associated with
such obstacles is very low even at volume fractions
of particulates or short fibres as high as ∼0.3. Thus,
such reinforcement in itself cannot cause the threshold
creep behaviour. The true threshold creep behaviour is
always associated with the presence of mechanically
strong particles of nanometer dimensions that are in-
coherent with the matrix. The true threshold stress in
an Al-8.5Fe-1.3V-1.7Si alloy is due to the presence
of fine Al12(Fe,V)3Si phase particles. However, rein-
forcing this alloy with 15 vol% alumina short fibres of
nominally 3 µm in diameter, the true treshold stress ap-
proximately twice as high is obtained. According to the
idea outlined in Section 4.1 the reinforcement may en-
hance the true threshold stress of a dispersion strength-
ened alloy due to load transfer, i.e., due to impeding
the plastic flow of the dispersion strengthened matrix
of the Composite. This idea can be considered quite
relevant.

According to Equation 7, the true threshold stress
of the Composite is by a factor 
 higher than the true
threshold stress of the (dispersion strengthened) Alloy.
Provided the conditions of strict validity of Equation 4
are fulfilled, the factor 
 can be calculated by means
of this equation. Of course, to apply Equation 4 the as-
pect ratio lR/dR of alumina short fibres must be known.
In the present work, the average length of short fibres
in the Composite could not be estimated by a tech-
nique of microstructural analysis. However, according
to Equation 7, 
 = σTH(C)/σTH(A): thus the factor 


defined this way is denoted as the “effective” load trans-
fer factor 
exp in the following. The factor 
exp is equal
to 2.11, 2.07 and 2.08 at 648, 698 and 748 K, respec-
tively (see Section 3.3). In average 
exp is equal to 2.09.
Accepting this value of 
, the “effective” aspect ratio
lR/dR was estimated by means of Equation 4. Setting

exp = 2.09 and fR = 0.15, the “effective” aspect ratio
equal to 7.4 is obtained. The length of alumina fibres
(∼3 µm in diameter) used to produce the composite was
nominally ∼40 µm (Section 2). However, many of the
fibres, if not all, were broken during the composite pro-
cessing. Hence, the above effective aspect ratio seems
reasonable. From this aspect ratio, the average length
of a fibre in the Composite is approximately equal to
22.2 µm.

The conditions of validity of Equation 4 may not
be strictly fulfilled. This concerns especially alignment
of the short fibres with the extrusion direction and
thus with the applied stress direction. On the other
hand, the conditions concerning the value of applied
stress exponent is most probably fulfilled tolerably,
since at the applied stresses only slightly higher than
the true threshold stresses the apparent stress expo-
nent mc, (Equation 1), reaches very high values at
each temperature under consideration (see Fig. 6). It
should be expected that, introducing the reinforce-
ment, the structure of the matrix Alloy is more or less
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Figure 11 Relations between minimum creep strain rate ε̇m and the ef-
fective stress σe = σ − σTH. The dimensionless constant A = A(A)
in the creep equation for the Alloy–Equation 2—was estimated from
creep data to 3.299 × 10−10 and to 4.492 × 10−13 for 748 K and for
648 K, respectively. Values of the constant A = A(C) in the creep equa-
tion for the Composite—Equation 5—were calculated using the relation
A(C) = A(A)/
n, Equation 6, setting 5 for n and 2.09 for 
. The
creep strain rates ε̇m in the Composite were then calculated by means of
Equation 5.

modified, which might slightly affect the load transfer
factor 
exp.

In Fig. 11, the minimum creep strain rates ε̇m are
plotted against effective stress σe = σ − σTH for both
the Alloy and the Composite at 648 and 748 K. The
procedure used to obtain these ε̇m vs. (σ−σTH) relations
is described in caption to Fig. 11, from which it can
be seen that ε̇m vs. (σ − σTH) data plots for the alloy
and the composite can be very well fitted by a single
straight line for 648 K, that the same holds for 748 K
and, finally, that the slopes of straight lines are very
close to the true stress exponent n, i.e., to 5. The figure
thus strongly supports the above conclusion that the
effective load transfer factor 
exp is in average equal to
2.09.

4.3. Applied stress and temperature
dependence of the apparent activation
energy Q corr

c and of the apparent stress
exponent mc

In a concurrent paper [26] it is shown that the apparent
activation energy of creep corrected for the tempera-
ture dependence of shear modulus, Qcorr

c , in both the
Alloy and the Composite decreases with increasing ap-
plied stress as well as with increasing temperature. At
the applied stresses only slightly higher than the true
threshold stress it reaches values many times higher
than the true activation energy of creep, i.e., the acti-
vation enthalpy of lattice self-diffusion in aluminium
�HL = 142 kJ mol−1 [24]. These differences are fully
explained in terms of the temperature dependence of the
true threshold stress (cf. [17, 20]). Also, it is shown that

Figure 12 Effect of the short fibre reinforcement on the creep strength
of the Alloy. Relations between the minimum creep strain rate ε̇m and
applied stress σ for the Composite at 748 K, compared with a similar
relation for the Alloy.

the apparent stress exponent mc of the minimum creep
strain rate in creep of both the Alloy and the Composite
is generally higher (or even much higher) than the true
stress exponent n. The applied stress dependence of the
exponent mc is inherent to the true threshold creep be-
haviour. Its temperature dependence follows from the
temperature dependence of the true threshold stress (cf.
[17, 20]).

4.4. Effect of the short fibre reinforcement
on the strength of the alloy

In Fig. 12, the relation between minimum creep strain
rate ε̇m and applied stress σ for the Composite at 748 K
is compared with a similar relation for the Alloy. At the
lowest applied stress at which the minimum creep strain
rate was measured in the Composite, i.e., at 90 MPa,
the creep strain rate of the Alloy is by ∼7 orders of
magnitude higher than that in the Composite. Thus,
the creep strengthening of the alumina short fibre re-
inforced Alloy is dramatic. Comparing visually the re-
lations between ε̇m and σ for the Composite and the
Alloy one can conclude that the strengthening effect of
the short fibre reinforcement is almost exclusively due
to its effect on the true threshold stress. This is in agree-
ment with the analysis of the ε̇m(σ, T ) data presented
above.

5. Additional remarks
5.1. Temperature dependence of the true

threshold stress
Although the true threshold stress in the Composite
is by a factor ∼2 higher than that in the unreinforced
Alloy, its origin is the same as in the latter. The true
threshold stress σTH is supposed to originate from an
attractive interaction of dislocations with fine incoher-
ent Al12(Fe,V)3Si phase particles [10]. As suggested
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[6, 10], it can be identified with the athermal detach-
ment stress σd, expressed as

σd = σOB

√
1 − k2

R, (8)

where σOB is the Orowan bowing stress and kR is the
relaxation factor [27, 28]. However, such an identifi-
cation of σTH with σd is possible only if the relaxation
factor kR is admitted to increase with increasing temper-
ature, since the Orowan bowing stress is proportional
to the shear modulus [29] and the true threshold stress
decreases with increasing temperature more strongly
than this modulus, Figs 4 and 8. Such an interpretation
of the origin of the strong temperature dependence of
the true threshold stress was suggested by the present
authors [6, 10]. In a very recent paper, Spigarelli [30]
has strongly supported this suggestion (see Fig. 14 in
[30]).

5.2. Volume fraction of the “active”
Al12(Fe,V)3Si phase particles

The volume fraction of the Al12(Fe,V)3Si phase parti-
cles in the Al-8.5Fe-1.3V-1.7Si type alloy is, as a rule,
reported [1, 2, 4, 6] to be ∼0.27. A careful analysis
has led Spigarelli [30] to the conclusion that far from
all dispersed Al12(Fe,V)3Si particles act as obstacles
to moving dislocations. In the Alloy, the volume frac-
tion of “active” particles has been estimated to 0.04.
In the Alloy reinforced with 15 vol% SiC particulates
the volume fraction of active particles is slightly higher
namely ∼0.05. The difference between the total vol-
ume fraction and the volume fraction of active parti-
cles is explained by the particles being predominantly
located at grain boundaries; of course, these particles
cannot interact with lattice dislocations [30]. An in-
troduction of the discontinuous reinforcement into the
matrix alloy should be expected to modify the structure
of the latter (see Section 4.2). This structure modifi-
cation thus seems to be primarily manifested by the
higher active particle volume fraction in the Alloy.
But such a modification of the structure of the Com-
posite cannot in itself fully explain the higher true
threshold stresses in the Composite than in its matrix
Alloy.

6. Summary and conclusions
Creep in an Al-8.5Fe-1.3V-1.7Si (8009Al type) al-
loy strengthened with Al12(Fe,V)3Si phase particles of
nanometer dimensions and the same Alloy reinforced
with alumina short fibres of micrometer dimensions—
the Composite—is investigated at temperatures 648,
698 and 748 K. The analysis of the creep data leads to
the following main conclusions.

1. The minimum creep strain rate ε̇m is apparently
controlled by the lattice self-diffusion in the Alloy
matrix—aluminium—and the true stress exponent n of
minimum creep strain rate is very close to 5.

2. Both the Alloy and the Composite exhibit true
threshold creep behaviour. The true threshold stress de-

creases with increasing temperature more strongly than
the shear modulus in aluminium. However, it is about
twice as high in the Composite than in the matrix Alloy.
This is explained employing the concept of the load
transfer effect in the true threshold creep behaviour,
Section 4.1.

3. The results and their analysis strongly suggest that
rather dramatic enhancement of creep resistance of an
A1-8.5Fe-1.3V-1.7Si alloy can be reached introducing
into it mechanically strong short fibres of micrometer
dimensions. the volume fraction of the fibres must be
large enough (e.g., 0.15) and the aspect ratio of short
fibres must be high enough (e.g., 10). Also the dimen-
sions of short fibres should be large enough to prevent
load transfer relaxation by diffusional flow. Hence, the
mean diameter of a short fibre should not be less than
about 3 µm.
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